Displaying similar documents to “Déformations infinitésimales des espaces riemanniens localement symétriques. II : la conjecture infinitésimale de Blaschke pour les espaces projectifs complexes”

Module d’Alexander et représentations métabéliennes

Hajer Jebali (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

On sait, depuis des travaux de Burde et de Rham, que l’étude des représentations du groupe d’un nœud dans le groupe des matrices triangulaires supérieures inversibles d’ordre 2 permet de détecter les racines du polynôme d’Alexander du nœud. Dans ce travail, nous nous proposons de généraliser ce résultat et ce en considérant les représentations du groupe du nœud dans le groupe des matrices triangulaires supérieures inversibles d’ordre n , n 2 . Cette approche nous permettra de retrouver la décomposition...

Fibrés uniformes de rang élevé sur 2

Georges Elencwajg (1981)

Annales de l'institut Fourier

Similarity:

Un fibré vectoriel holomorphe sur P 2 est dit uniforme si ses images réciproques sous tous les plongements linéaires P 1 P 2 sont isomorphes. Nous classons les fibrés uniformes de rang 4 sur P 2 .

Résolution des fibrés généraux stables de rang 2 sur 3 de classes de Chern c 1 = - 1 , c 2 = 2 p 6  : I

Olivier Rahavandrainy (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

On considère l’espace de modules M ( c 1 , c 2 ) des fibrés stables de rang 2 sur k 3 , de classes de Chern c 1 , c 2 , k étant un corps algébriquement clos de caractéristique quelconque. Si ( c 1 = 0 , c 2 > 0 ) ou ( c 1 = - 1 , c 2 = 2 p 6 ), on sait ([7], [9]) que M ( c 1 , c 2 ) a une composante irréductible dont le point générique ( c 1 , c 2 ) a la cohomologie naturelle. Nous avons calculé ([16]) la résolution minimale de ( 0 , c 2 ) . Dans cet article, nous voulons déterminer celle de ( - 1 , c 2 ) si c 2 > ( v + 2 ) ( 2 v 2 + 3 v - 1 ) 6 v + 7 , v est le plus petit entier tel que h 0 ( ( v ) ) > 0 . Par un procédé standard rappelé dans [16], on se...