The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Racines de polynômes de Bernstein”

Singularité de séries de Dirichlet associées à des polynômes de plusieurs variables et applications en théorie analytique des nombres

Driss Essouabri (1997)

Annales de l'institut Fourier

Similarity:

Soit P [ X 1 , ... , X n ] un polynôme. On appelle série de Dirichlet associée à P la fonction : s Z ( P ; s ) = m * n P ( m ) - s ( s ) . Dans cet article nous étudions l’existence et les propriétés du prolongement méromorphe d’une telle série sous l’hypothèse qu’il existe B ] 0 , 1 [ tel que : i) P ( x ) + quand | | x | | + et x [ B , + [ n et ii) d ( Z ( P ) , [ B , + [ n ) > 0 Z ( P ) = { z n | P ( z ) = 0 } . Cette hypothèse est probablement optimale et en tout cas contient strictement toutes les classes de polynômes déjà traitées antérieurement. Sous cette hypothèse nos principaux résultats sont : l’existence du prolongement méromorphe...

Nombres de racines d’un polynôme entier modulo q

Monique Branton, Olivier Ramaré (1998)

Journal de théorie des nombres de Bordeaux

Similarity:

Nous montrons que l’ensemble des racines modulo une puissance d’un nombre premier d’un polynôme à coefficients entiers de degré d est une union d’au plus d progressions arithmétiques de modules assez grands. Nous en déduisons une majoration du nombre de ses racines dans un intervalle réel court.

Prolongement méromorphe des séries de Dirichlet associées à des fractions rationnelles de plusieurs variables

Patrick Sargos (1984)

Annales de l'institut Fourier

Similarity:

Soient P ( x _ ) = P ( x 1 , ... , x n ) et Q ( x _ ) = Q ( x 1 , ... , x n ) deux polynômes à coefficients positifs vérifiant : lim | x _ | + x 1 , ... , x n 1 P ( x _ ) Q ( x _ ) = + . Soient η _ = ( η 1 , ... , η n ) N n et R = P / Q . On étudie la série de Dirichlet Z ( R , η _ ; s ) = η 1 , ... , η n = 1 η _ η _ R ( η _ ) - s : abscisse de convergence absolue, existence et nature du prolongement méromorphe, ordre de grandeur dans les bandes verticales. On donne un procédé de construction du prolongement méromorphe de la fonction s Z ( R , η _ ; s ) qui ne dépend que de η _ et de certains monômes de P et Q : les monômes extrémaux.