Displaying similar documents to “Inégalités de Łojasiewicz globales”

Algèbres analytiques topologiquement noéthériennes. Théorie de Khovanskii

Jean-Claude Tougeron (1991)

Annales de l'institut Fourier

Similarity:

On étudie certaines algèbres de fonctions analytiques réelles définies sur un ouvert Ω de R n . La propriété principale de ces algèbres est que tout semi-analytique de Ω défini globalement à l’aide d’un nombre fini de fonctions de 𝒪 ( Ω ) , admet un nombre fini de composantes connexes. En reprenant les idées de Khovanskii (lemme de Rolle généralisé), on démontre que ces algèbres restent topologiquement noethériennes quand on leur adjoint les solutions de certaines équations différentielles du...

Courbes analytiques sur un germe d'espace analytique et applications

Jean-Claude Tougeron (1976)

Annales de l'institut Fourier

Similarity:

Soit f : X Y un germe d’applications algébriques entre deux germes de variétés algébriques complexes. Soient O X ' O Y les anneaux de germe de fonctions holomorphes sur X et Y respectivement : f * : O Y O X l’homomorphisme déduit de f . Nous démontrons, en utilisant quelques propriétés élémentaires des courbes analytiques sur un germe d’espace analytique et sous certaines hypothèses sur X et Y , que f * induit une application ouverte de O Y sur f * ( O Y ) et que f * ( O Y ) est fermé dans O X (pour les topologies de Krull).

Points réguliers d'un sous-analytique

Krzysztof Kurdyka (1988)

Annales de l'institut Fourier

Similarity:

On donne une autre démonstration (sans désingularisation de Hironaka) du théorème de Tamm, qui dit que la partie régulière d’un sous-analytique est sous-analytique. En plus, on montre que pour chaque fonction f : U R de classe SUBB (“sous-analytique à l’infini”), où U est un sous-ensemble ouvert et borné dans R ( n , il existe un entier k N tel que f est analytique dans x U si et seulement si f est de classe G k ( k -fois différentiable au sens de Gateaux) dans un voisinage de x .

Localisation formelle et groupe de Picard

Jean Fresnel, Marius Van Der Put (1983)

Annales de l'institut Fourier

Similarity:

Soient X un espace analytique affinoïde réduit sur un corps K complet pour une valeur absolue non archimédienne, r : X X ^ sa réduction canonique et p X ^ un point de la variété algébrique affine X ^ . Ce travail décrit la singularité du point p à l’aide d’objets associés à l’espace X : la localisation formelle 𝒪 X , ( p ) qui est une K -algèbre noethérienne de spectre maximal r - 1 ( p ) et dont la réduction est 𝒪 X ^ , ( p )  ; un complété formel 𝒪 X , ( p ) qui est une K -algèbre noethérienne dont la réduction est 𝒪 X ^ , ( p ) . Les résultats essentiels...