Displaying similar documents to “Décomposition formelle d'un système microdifférentiel aux points génériques”

La transformation de Fourier pour les 𝒟 -modules

Liviu Daia (2000)

Annales de l'institut Fourier

Similarity:

Sur n vu comme variété algébrique, soient la transformation de Fourier pour les 𝒟 -modules, + la transformation de Fourier faisceautique de Brylinsky-Malgrange-Verdier, et 𝒮 o l le foncteur “solutions”. On prouve alors que pour tout 𝒟 -module 1-spécialisable à l’infini , on a un isomorphisme 𝒮 o l ( ) + 𝒮 o l ( ) . Le résultat a été conjecturé en 1988 par B. Malgrange, qui l’a prouvé pour module de type fini sur l’algèbre de Weyl.

Régularité Gevrey des solutions de l'équation de Monge-Ampère réelle

Saoussen Kallel-Jallouli (2003)

Bollettino dell'Unione Matematica Italiana

Similarity:

0.1 {ll (uij+aij(x,u, u))=K(x) f(x,u, u) in Rn u| = . dove la curvatura K soddisfa K > 0 in Ω , K = 0 d K 0 su Ω , ed f è strettamente positivo. Proviamo che se i dati Ω , a i j , K , f , φ sono in una classe di Gevrey, ogni soluzione C 3 ( C 2 se n = 2 ) del problema 0.1 sta nella stessa classe di Grevey su Ω ¯ .

Sur les résidus de Baum-Bott

El Hadji Malick Dia (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

0n se donne une variété complexe V , compacte, de dimension complexe n , un champ de vecteurs v holomorphe sur V , un fibré vecoriel E de rang r au dessus de V et une -action θ v sur E . Il est bien connu que si v n’a pas de singularité, tous les nombres de Chern c I ( E ) [ V ] sont nuls ( | I | = n ). Si v a des singularités, Bott a démontré que ces nombres de Chern se localisent près de ces singularités donnant lieu à des résidus . Ces résidus ont été calculés d’abord par Bott dans le cas d’une singularité isolée...