Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs
Sara Brofferio, Wolfgang Woess (2005)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Sara Brofferio, Wolfgang Woess (2005)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Sara Brofferio (2003)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Bruno Schapira (2009)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
In this paper we study a random walk on an affine building of type , whose radial part, when suitably normalized, converges toward the brownian motion of the Weyl chamber. This gives a new discrete approximation of this process, alternative to the one of Biane ( (1991) 117–129). This extends also the link at the probabilistic level between riemannian symmetric spaces of the noncompact type and their discrete counterpart, which had been previously discovered...
Jean-Christophe Mourrat (2011)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Attributing a positive value to each ∈ℤ, we investigate a nearest-neighbour random walk which is reversible for the measure with weights ( ), often known as “Bouchaud’s trap model.” We assume that these weights are independent, identically distributed and non-integrable random variables (with polynomial tail), and that ≥5. We obtain the quenched subdiffusive scaling limit of the model, the limit being the fractional kinetics process. We begin our proof...
Harry Kesten (1986)
Annales de l'I.H.P. Probabilités et statistiques
Similarity: