Analytic cell decomposition and analytic motivic integration
Raf Cluckers, Leonard Lipshitz, Zachary Robinson (2006)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Raf Cluckers, Leonard Lipshitz, Zachary Robinson (2006)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Olivier Le Gal (2010)
Annales de la faculté des sciences de Toulouse Mathématiques
Similarity:
We prove that the expansion of the real field by a restricted C-function is generically o-minimal. Such a result was announced by A. Grigoriev, and proved in a different way. Here, we deduce quasi-analyticity from a transcendence condition on Taylor expansions. This then implies o-minimality. The transcendance condition is shown to be generic. As a corollary, we recover in a simple way that there exist o-minimal structures that doesn’t admit analytic cell decomposition, and that there...
Eberhard Gerlach (1968)
Annales de l'institut Fourier
Similarity:
On démontre que, dans les espaces fonctionnels propres de Hilbert (avec un noyau reproduisant), formés de fonctions analytiques de variables dans un domaine , pour tout opérateur auto-adjoint, les fonctions propres généralisées sont des fonctions réelles-analytiques dans .
Artur Piękosz (2004)
Open Mathematics
Similarity:
Letg:U→ℝ (U open in ℝn) be an analytic and K-subanalytic (i. e. definable in ℝanK, whereK, the field of exponents, is any subfield ofℝ) function. Then the set of points, denoted Σ, whereg does not admit an analytic extension is K-subanalytic andg can be extended analytically to a neighbourhood of Ū.
F. Broglia, A. Tognoli (1989)
Annales de l'institut Fourier
Similarity:
For a function (where is a real algebraic manifold) the following problem is studied. If is an algebraic subvariety of , can be approximated by rational regular functions such that We find that this is possible if and only if there exists a rational regular function such that and g(x) for any in . Similar results are obtained also in the analytic and in the Nash cases. For non approximable functions the minimal flatness locus...
Aleksandra Nowel (2005)
Annales de l’institut Fourier
Similarity:
Let be a compact semianalytic set and let be a collection of real analytic functions defined in some neighbourhood of . Let be the germ at of the set . Then there exist analytic functions defined in a neighbourhood of such that , for all .