Displaying similar documents to “Sur la méthode des orbites pour une algèbre de Lie résoluble”

Géométrie de la structure adjointe sur un groupe de Lie et algèbres de type 𝒫 1

Georges Giraud (1982)

Annales de l'institut Fourier

Similarity:

À partir de l’étude de l’intégrabilité de la structure adjointe sur un groupe de Lie 𝒢 , on est amené à introduire l’algèbre de Lie h g des opérateurs symétriques du crochet de l’algèbre de Lie g de 𝒢 . On fait apparaître une décomposition canonique de toute algèbre de Lie de centre nul en somme directe σ b d’idéaux caractéristiques, où σ est somme de deux sous-algèbres abéliennes et où h b est formée d’opérateurs nilpotents. Nous montrons que l’étude de la platitude à l’ordre 2...

Déterminant associé à une trace sur une algèbre de Banach

Pierre de La Harpe, Georges Skandalis (1984)

Annales de l'institut Fourier

Similarity:

Soient A une algèbre de Banach complexe, G L ( A ) le groupe général linéaire stable de A et G L 0 ( A ) sa composante connexe pour la topologie normique. Nous montrons que toute trace non nulle r : A C permet de définir un homomorphisme Δ r de G L 0 ( A ) sur le quotient du groupe additif C par l’image r _ ( K 0 ( A ) ) du groupe de Grothendieck de A . Si A = M n ( C ) (respectivement si A est un facteur fini continu) avec la trace usuelle, alors exp ( i 2 π Δ r ) est le déterminant usuel (resp. exp ( Re ( i 2 π Δ r ) ) est celui de Fuglede et Kadison). Dans le cas général, les déterminants...

Équations aux différences associées à des groupes, fonctions représentatives.

Nicolas Marteau (2004)

Annales de l’institut Fourier

Similarity:

Inspiré par un travail de J.-P. Bézivin et F. Gramain sur les systèmes d’équations aux différences, on caractérise les sous-groupes H d’un groupe de Lie réel (resp. complexe) G , pour lesquels toute fonction f : G continue (resp. entière) telle que l’ensemble des H -translatées engendrent un -espace vectoriel de dimension finie, engendrent aussi un -espace vectoriel de dimension finie par G - translation. On fait le lien avec les systèmes d’équations aux différences à coefficients constants. ...