The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Instability of equilibria in dimension three”

Non oscillating solutions of analytic gradient vector fields

Fernando Sanz (1998)

Annales de l'institut Fourier

Similarity:

Let γ be an integral solution of an analytic real vector field ξ defined in a neighbordhood of 0 3 . Suppose that γ has a single limit point, ω ( γ ) = { 0 } . We say that γ is non oscillating if, for any analytic surface H , either γ is contained in H or γ cuts H only finitely many times. In this paper we give a sufficient condition for γ to be non oscillating. It is established in terms of the existence of “generalized iterated tangents”, i.e. the existence of a single limit point for any transform property...

On real algebraic links in S 3

R. Benedetti, M. Shiota (1998)

Bollettino dell'Unione Matematica Italiana

Similarity:

Viene presentata una costruzione che, dato un arbitrario nodo L S 3 , produce allo stesso tempo: 1) un'applicazione polinomiale f : R 4 , 0 R 2 , 0 con singolarità (debolmente) isolata in 0 e L come tipo di nodo della singolarità; 2) una risoluzione delle singolarità di f nel senso di Hironaka. Specializzando la costruzione ai nodi fibrati otteniamo una versione debole (a meno di scoppiementi e nella categoria analitica reale) di un reciproco per il teorema di fibrazione di Milnor.

On the existence of canard solutions

Daniel Panazzolo (2000)

Publicacions Matemàtiques

Similarity:

We study the existence of global canard surfaces for a wide class of real singular perturbation problems. These surfaces define families of solutions which remain near the slow curve as the singular parameter goes to zero.