Displaying similar documents to “On the complex geometry of invariant domains in complexified symmetric spaces”

On the complex and convex geometry of Ol'shanskii semigroups

Karl-Hermann Neeb (1998)

Annales de l'institut Fourier

Similarity:

To a pair of a Lie group G and an open elliptic convex cone W in its Lie algebra one associates a complex semigroup S = G Exp ( i W ) which permits an action of G × G by biholomorphic mappings. In the case where W is a vector space S is a complex reductive group. In this paper we show that such semigroups are always Stein manifolds, that a biinvariant domain D S is Stein is and only if it is of the form G Exp ( D h ) , with D h i W convex, that each holomorphic function on D extends to the smallest biinvariant Stein domain...

A differential geometric characterization of invariant domains of holomorphy

Gregor Fels (1995)

Annales de l'institut Fourier

Similarity:

Let G = K be a complex reductive group. We give a description both of domains Ω G and plurisubharmonic functions, which are invariant by the compact group, K , acting on G by (right) translation. This is done in terms of curvature of the associated Riemannian symmetric space M : = G / K . Such an invariant domain Ω with a smooth boundary is Stein if and only if the corresponding domain Ω M M is geodesically convex and the sectional curvature of its boundary S : = Ω M fulfills the condition K S ( E ) K M ( E ) + k ( E , n ) . The term k ( E , n ) is explicitly...

Spherical functions on ordered symmetric spaces

Jacques Faraut, Joachim Hilgert, Gestur Ólafsson (1994)

Annales de l'institut Fourier

Similarity:

We define on an ordered semi simple symmetric space = G / H a family of spherical functions by an integral formula similar to the Harish-Chandra integral formula for spherical functions on a Riemannian symmetric space of non compact type. Associated with these spherical functions we define a spherical Laplace transform. This transform carries the composition product of invariant causal kernels onto the ordinary product. We invert this transform when G is a complex group, H a real form of G ,...