Commensurability classes and volumes of hyperbolic 3-manifolds
A. Borel (1981)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
A. Borel (1981)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Mikhail Belolipetsky (2004)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
We apply G. Prasad’s volume formula for the arithmetic quotients of semi-simple groups and Bruhat-Tits theory to study the covolumes of arithmetic subgroups of . As a result we prove that for any even dimension there exists a unique compact arithmetic hyperbolic -orbifold of the smallest volume. We give a formula for the Euler-Poincaré characteristic of the orbifolds and present an explicit description of their fundamental groups as the stabilizers of certain lattices in quadratic...
C. Walter (1979)
Acta Arithmetica
Similarity:
Bohdan Zelinka (1975)
Czechoslovak Mathematical Journal
Similarity:
Armand Borel, Gopal Prasad (1989)
Publications Mathématiques de l'IHÉS
Similarity:
Mukherjee, N.P., Khazal, R. (1990)
International Journal of Mathematics and Mathematical Sciences
Similarity: