Commensurability classes and volumes of hyperbolic 3-manifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1981)
- Volume: 8, Issue: 1, page 1-33
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBorel, A.. "Commensurability classes and volumes of hyperbolic 3-manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 8.1 (1981): 1-33. <http://eudml.org/doc/83853>.
@article{Borel1981,
author = {Borel, A.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {families of commensurable hyperbolic 3-manifolds; infinitely many non- isomorphic minimal elements in a commensurability class; V-manifolds; arithmetically defined fundamental group; discrete subgroup of PGL2(C) of finite covolume; maximal compact subgroups in groups over local fields; volumes of hyperbolic 3-manifolds},
language = {eng},
number = {1},
pages = {1-33},
publisher = {Scuola normale superiore},
title = {Commensurability classes and volumes of hyperbolic 3-manifolds},
url = {http://eudml.org/doc/83853},
volume = {8},
year = {1981},
}
TY - JOUR
AU - Borel, A.
TI - Commensurability classes and volumes of hyperbolic 3-manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1981
PB - Scuola normale superiore
VL - 8
IS - 1
SP - 1
EP - 33
LA - eng
KW - families of commensurable hyperbolic 3-manifolds; infinitely many non- isomorphic minimal elements in a commensurability class; V-manifolds; arithmetically defined fundamental group; discrete subgroup of PGL2(C) of finite covolume; maximal compact subgroups in groups over local fields; volumes of hyperbolic 3-manifolds
UR - http://eudml.org/doc/83853
ER -
References
top- [1] R. Baer, The group of motions of a two-dimensional elliptic plane, Compositio Math., 9 (1951), pp. 241-288. Zbl0045.10001MR48051
- [2] A. Borel, Density and maximality of arithmetic subgroups, J. Reine Angew. Math., 224 (1966), pp. 78-89. Zbl0158.03105MR205999
- [3] Z.I. Borevich - I.R. Shafarevich, Number Theory, Academic Press, New York, 1966. Zbl0145.04902MR195803
- [4] M. Deuring, Algebren, Erg. d. Math. u. i. Grenzgeb. 4, Springer Verlag, 1935. Zbl0011.19801MR228526JFM61.0118.01
- [5] M. Eichler, Ueber die Idealtheorie hyperkomplexer Systeme, Math. Z., 43 (1938), pp. 481-494. Zbl0018.20201MR1545733JFM64.0085.01
- [6] R. Fricke, Ueber den aritmetischen Charaker der zu den Verzweigungen (2, 3, 7) und (2, 4, 7) gehörenden Dreicksfunctionen, Math. Ann., 41 (1893), pp. 443-468. MR1510754JFM24.0395.01
- [7] R. Fricke - F. Klein, Vorlesungen über die Theorie der automorphen Functionen, Band I, B. G. Teubner, Leipzig, 1893. JFM28.0334.01
- [8] H.J. Godwin, On quartic fields with signature one with small discriminants, Quart. J. Math. Oxford, 8 (1957), pp. 214-222. Zbl0079.05704MR97375
- [9] H. Helling, Bestimmung der Kommensurabilitätsklasse der Hilbertschen Modulgruppe, Math. Z., 92 (1966), pp. 269-280. Zbl0143.30601MR228437
- [10] N. Iwahori - H. Matsumoto, On some Bruhat decompositions and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. I.H.E.S., 25 (1965), pp. 237-280. Zbl0228.20015MR185016
- [11] H. Jacquet - R. Langlands, Automorphic forms on GL(2), Lecture Notes in Mathematics114, Springer-Verlag1970. Zbl0236.12010MR401654
- [12] K. Takeuchi, Commensurability classes of arithmetic triangle groups, J. Fac. Sci. Univ. Tokyo, 24 (1977), pp. 201-212. Zbl0365.20055MR463116
- [13] G.A. Margoulis, Discrete groups of isometries of manifolds of nonpositive curvature, Proc. Int. Congress Math. 1974, Vancouver, Vol. 2, pp. 21-34.
- [14] J. Mayer, Die absolut-kleinsten Diskriminanten der biquadratischen Zahlkörper, Sitzungsber. Akad. Wiss. Wien(IIA), 138 (1929), pp. 733-742. Zbl55.0104.05JFM55.0104.05
- [15] A.M. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math., 29 (1975), pp. 275-286. Zbl0306.12005MR376613
- [16] T. Ono, On algebraic groups and discontinuous subgroups, Nagoya Math. J., 27 (1966), pp. 297-322. Zbl0166.29802MR199193
- [17] M.S. Raghunathan, Discrete subgroups of Lie groups, Erg. d. Math. u. i. Grenzgeb., 68, Springer Verlag, 1972. Zbl0254.22005MR507234
- [18] J. Rohlfs, Ueber maximale arithmetisch definierte Gruppen, Math. Ann., 234 (1978), pp. 239-252. Zbl0384.20038MR498975
- [19] J. Rohlfs, Die maximalen arithmetisch definierten Untergruppen zerfallender einfacher Gruppen, preprint. Zbl0426.20030MR553253
- [20] J-P. Serre, Cohomologie des groupes discrets, in Prospects in Math., Annals Math. Studies, 70, Princeton U. Press1970, pp. 77-168. Zbl0235.22020MR385006
- [21] J-P. Serre, Arbres, amalgames, SL2, Astérisque, 46 (1977), Soc. Math. France. Zbl0369.20013MR476875
- [22] H. Shimizu, On zeta functions of quaternion algebras, Ann. of Math., (2) 81 (1965), pp. 166-193. Zbl0201.37903MR171771
- [23] C.L. Siegel, The volume of the fundamental domain for some infinite groups, Trans. A.M.S., 39 (1936), pp. 209-218. Zbl0013.24901MR1501843JFM62.0137.01
- [24] W. Thurston, The geometry and topology of 3-manifolds, mimeographed Notes, Princeton University.
- [25] J. Tits, Travaux de Margulis sur les sous-groupes discrets de groupes de Lie, Sém. Bourbaki, Exp. 482, Février 1976, Springer L.N., 567, pp. 174-190. Zbl0346.22011MR492073
- [26] H.C. Wang, On a maximality property of discrete subgroups with fundamental domain of finite measure, Amer. J. Math., 89 (1967), pp. 124-132. Zbl0152.01002MR207895
- [27] H.C. Wang, Topics on totally discontinuous groups, in Symmetric spaces, W. Boothby ed., M. Dekker1972, pp. 460-487. Zbl0232.22018MR414787
- [28] A. Weil, Basic Number Theory, Grund. Math. Wiss., 144, Springer-Verlag1967. Zbl0176.33601MR234930
- [29] A. Weil, Adeles and algebraic groups, Notes by M. Demazure and T. Ono, The Institute for Advanced Study, 1961. MR670072
- [30] B. Weisfeiler, On abstract monomorphisms of k-forms of PGL(2), J. Algebra, 57 (1979), pp. 522-543. Zbl0406.20035MR533812
Citations in EuDML Documents
top- Masahito Toda, Representation of finite groups and the first Betti number of branched coverings of a universal Borromean orbifold
- Ted Chinburg, Eduardo Friedman, Hilbert symbols, class groups and quaternion algebras
- Ted Chinburg, Eduardo Friedman, The finite subgroups of maximal arithmetic kleinian groups
- Ted Chinburg, Eduardo Friedman, Kerry N. Jones, Alan W. Reid, The arithmetic hyperbolic 3-manifold of smallest volume
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.