Commensurability classes and volumes of hyperbolic 3-manifolds

A. Borel

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1981)

  • Volume: 8, Issue: 1, page 1-33
  • ISSN: 0391-173X

How to cite

top

Borel, A.. "Commensurability classes and volumes of hyperbolic 3-manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 8.1 (1981): 1-33. <http://eudml.org/doc/83853>.

@article{Borel1981,
author = {Borel, A.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {families of commensurable hyperbolic 3-manifolds; infinitely many non- isomorphic minimal elements in a commensurability class; V-manifolds; arithmetically defined fundamental group; discrete subgroup of PGL2(C) of finite covolume; maximal compact subgroups in groups over local fields; volumes of hyperbolic 3-manifolds},
language = {eng},
number = {1},
pages = {1-33},
publisher = {Scuola normale superiore},
title = {Commensurability classes and volumes of hyperbolic 3-manifolds},
url = {http://eudml.org/doc/83853},
volume = {8},
year = {1981},
}

TY - JOUR
AU - Borel, A.
TI - Commensurability classes and volumes of hyperbolic 3-manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1981
PB - Scuola normale superiore
VL - 8
IS - 1
SP - 1
EP - 33
LA - eng
KW - families of commensurable hyperbolic 3-manifolds; infinitely many non- isomorphic minimal elements in a commensurability class; V-manifolds; arithmetically defined fundamental group; discrete subgroup of PGL2(C) of finite covolume; maximal compact subgroups in groups over local fields; volumes of hyperbolic 3-manifolds
UR - http://eudml.org/doc/83853
ER -

References

top
  1. [1] R. Baer, The group of motions of a two-dimensional elliptic plane, Compositio Math., 9 (1951), pp. 241-288. Zbl0045.10001MR48051
  2. [2] A. Borel, Density and maximality of arithmetic subgroups, J. Reine Angew. Math., 224 (1966), pp. 78-89. Zbl0158.03105MR205999
  3. [3] Z.I. Borevich - I.R. Shafarevich, Number Theory, Academic Press, New York, 1966. Zbl0145.04902MR195803
  4. [4] M. Deuring, Algebren, Erg. d. Math. u. i. Grenzgeb. 4, Springer Verlag, 1935. Zbl0011.19801MR228526JFM61.0118.01
  5. [5] M. Eichler, Ueber die Idealtheorie hyperkomplexer Systeme, Math. Z., 43 (1938), pp. 481-494. Zbl0018.20201MR1545733JFM64.0085.01
  6. [6] R. Fricke, Ueber den aritmetischen Charaker der zu den Verzweigungen (2, 3, 7) und (2, 4, 7) gehörenden Dreicksfunctionen, Math. Ann., 41 (1893), pp. 443-468. MR1510754JFM24.0395.01
  7. [7] R. Fricke - F. Klein, Vorlesungen über die Theorie der automorphen Functionen, Band I, B. G. Teubner, Leipzig, 1893. JFM28.0334.01
  8. [8] H.J. Godwin, On quartic fields with signature one with small discriminants, Quart. J. Math. Oxford, 8 (1957), pp. 214-222. Zbl0079.05704MR97375
  9. [9] H. Helling, Bestimmung der Kommensurabilitätsklasse der Hilbertschen Modulgruppe, Math. Z., 92 (1966), pp. 269-280. Zbl0143.30601MR228437
  10. [10] N. Iwahori - H. Matsumoto, On some Bruhat decompositions and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. I.H.E.S., 25 (1965), pp. 237-280. Zbl0228.20015MR185016
  11. [11] H. Jacquet - R. Langlands, Automorphic forms on GL(2), Lecture Notes in Mathematics114, Springer-Verlag1970. Zbl0236.12010MR401654
  12. [12] K. Takeuchi, Commensurability classes of arithmetic triangle groups, J. Fac. Sci. Univ. Tokyo, 24 (1977), pp. 201-212. Zbl0365.20055MR463116
  13. [13] G.A. Margoulis, Discrete groups of isometries of manifolds of nonpositive curvature, Proc. Int. Congress Math. 1974, Vancouver, Vol. 2, pp. 21-34. 
  14. [14] J. Mayer, Die absolut-kleinsten Diskriminanten der biquadratischen Zahlkörper, Sitzungsber. Akad. Wiss. Wien(IIA), 138 (1929), pp. 733-742. Zbl55.0104.05JFM55.0104.05
  15. [15] A.M. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math., 29 (1975), pp. 275-286. Zbl0306.12005MR376613
  16. [16] T. Ono, On algebraic groups and discontinuous subgroups, Nagoya Math. J., 27 (1966), pp. 297-322. Zbl0166.29802MR199193
  17. [17] M.S. Raghunathan, Discrete subgroups of Lie groups, Erg. d. Math. u. i. Grenzgeb., 68, Springer Verlag, 1972. Zbl0254.22005MR507234
  18. [18] J. Rohlfs, Ueber maximale arithmetisch definierte Gruppen, Math. Ann., 234 (1978), pp. 239-252. Zbl0384.20038MR498975
  19. [19] J. Rohlfs, Die maximalen arithmetisch definierten Untergruppen zerfallender einfacher Gruppen, preprint. Zbl0426.20030MR553253
  20. [20] J-P. Serre, Cohomologie des groupes discrets, in Prospects in Math., Annals Math. Studies, 70, Princeton U. Press1970, pp. 77-168. Zbl0235.22020MR385006
  21. [21] J-P. Serre, Arbres, amalgames, SL2, Astérisque, 46 (1977), Soc. Math. France. Zbl0369.20013MR476875
  22. [22] H. Shimizu, On zeta functions of quaternion algebras, Ann. of Math., (2) 81 (1965), pp. 166-193. Zbl0201.37903MR171771
  23. [23] C.L. Siegel, The volume of the fundamental domain for some infinite groups, Trans. A.M.S., 39 (1936), pp. 209-218. Zbl0013.24901MR1501843JFM62.0137.01
  24. [24] W. Thurston, The geometry and topology of 3-manifolds, mimeographed Notes, Princeton University. 
  25. [25] J. Tits, Travaux de Margulis sur les sous-groupes discrets de groupes de Lie, Sém. Bourbaki, Exp. 482, Février 1976, Springer L.N., 567, pp. 174-190. Zbl0346.22011MR492073
  26. [26] H.C. Wang, On a maximality property of discrete subgroups with fundamental domain of finite measure, Amer. J. Math., 89 (1967), pp. 124-132. Zbl0152.01002MR207895
  27. [27] H.C. Wang, Topics on totally discontinuous groups, in Symmetric spaces, W. Boothby ed., M. Dekker1972, pp. 460-487. Zbl0232.22018MR414787
  28. [28] A. Weil, Basic Number Theory, Grund. Math. Wiss., 144, Springer-Verlag1967. Zbl0176.33601MR234930
  29. [29] A. Weil, Adeles and algebraic groups, Notes by M. Demazure and T. Ono, The Institute for Advanced Study, 1961. MR670072
  30. [30] B. Weisfeiler, On abstract monomorphisms of k-forms of PGL(2), J. Algebra, 57 (1979), pp. 522-543. Zbl0406.20035MR533812

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.