Displaying similar documents to “Possible derivation of some S O ( p , q ) group representations by means of a canonical realization of the S O ( p , q ) Lie algebra”

On the contraction of the discrete series of S U ( 1 , 1 )

C. Cishahayo, S. De Bièvre (1993)

Annales de l'institut Fourier

Similarity:

It is shown, using techniques inspired by the method of orbits, that each non-zero mass, positive energy representation of the Poincaré group 𝒫 1 , 1 = S O ( 1 , 1 ) s 2 can be obtained via contraction from the discrete series of representations of S U ( 1 , 1 ) .

On the representation theory of braid groups

Ivan Marin (2013)

Annales mathématiques Blaise Pascal

Similarity:

This work presents an approach towards the representation theory of the braid groups B n . We focus on finite-dimensional representations over the field of Laurent series which can be obtained from representations of infinitesimal braids, with the help of Drinfeld associators. We set a dictionary between representation-theoretic properties of these two structures, and tools to describe the representations thus obtained. We give an explanation for the frequent apparition of unitary structures...

Explicit representations of classical Lie superalgebras in a Gelfand-Zetlin basis

N. I. Stoilova, J. Van der Jeugt (2011)

Banach Center Publications

Similarity:

An explicit construction of all finite-dimensional irreducible representations of classical Lie algebras is a solved problem and a Gelfand-Zetlin type basis is known. However the latter lacks the orthogonality property or does not consist of weight vectors for 𝔰𝔬(n) and 𝔰𝔭(2n). In case of Lie superalgebras all finite-dimensional irreducible representations are constructed explicitly only for 𝔤𝔩(1|n), 𝔤𝔩(2|2), 𝔬𝔰𝔭(3|2) and for the so called essentially typical representations...