Displaying similar documents to “Continuous bases for unitary irreducible representations of S U ( 1 , 1 )

Spherical functions and uniformly bounded representations of free groups

Tadeusz Pytlik (1991)

Studia Mathematica

Similarity:

We give a construction of an analytic series of uniformly bounded representations of a free group G, through the action of G on its Poisson boundary. These representations are irreducible and give as their coefficients all the spherical functions on G which tend to zero at infinity. The principal and the complementary series of unitary representations are included. We also prove that this construction and the other known constructions lead to equivalent representations.

Explicit Kazhdan constants for representations of semisimple and arithmetic groups

Yehuda Shalom (2000)

Annales de l'institut Fourier

Similarity:

Consider a simple non-compact algebraic group, over any locally compact non-discrete field, which has Kazhdan’s property ( T ) . For any such group, G , we present a Kazhdan set of two elements, and compute its best Kazhdan constant. Then, settling a question raised by Serre and by de la Harpe and Valette, explicit Kazhdan constants for every lattice Γ in G are obtained, for a “geometric” generating set of the form Γ B r , where B r G is a ball of radius r , and the dependence of r on Γ is described...

An analytic series of irreducible representations of the free group

Ryszard Szwarc (1988)

Annales de l'institut Fourier

Similarity:

Let F k be a free group on k generators. We construct the series of uniformly bounded representations z of F k acting on the common Hilbert space, depending analytically on the complex parameter z, 1 / ( 2 k - 1 ) < | z | < 1 , such that each representation z is irreducible. If z is real or | z | = 1 / ( 2 k - 1 ) then z is unitary; in other cases z cannot be made unitary. For z z ' representations z and z ' are congruent modulo compact operators.