Bounds on margin distributions in learning problems
Vladimir Koltchinskii (2003)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Vladimir Koltchinskii (2003)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Dmitry Panchenko (2009)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
We develop a cavity method for the spherical Sherrington–Kirkpatrick model at high temperature and small external field. As one application we compute the limit of the covariance matrix for fluctuations of the overlap and magnetization.
J. Pintz (1984)
Acta Arithmetica
Similarity:
David Pollard (2002)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Evarist Giné, Armelle Guillou (2002)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Amine Asselah (2011)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
We study the upper tails for the energy of a randomly charged symmetric and transient random walk. We assume that only charges on the same site interact pairwise. We consider estimates, that is when we average over both randomness, in dimension three or more. We obtain a large deviation principle, and an explicit rate function for a large class of charge distributions.