On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations
A. Agrachev, S. Kuksin, A. Sarychev, A. Shirikyan (2007)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A. Agrachev, S. Kuksin, A. Sarychev, A. Shirikyan (2007)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Waymire, Edward C. (2005)
Probability Surveys [electronic only]
Similarity:
Dragos Iftimie (1999)
Revista Matemática Iberoamericana
Similarity:
In this paper we prove global existence and uniqueness for solutions of the 3-dimensional Navier-Stokes equations with small initial data in spaces which are H in the i-th direction, δ + δ + δ = 1/2, -1/2 < δ < 1/2 and in a space which is L in the first two directions and B in the third direction, where H and B denote the usual homogeneous Sobolev and Besov spaces.
John G. Heywood (1979)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Roger Temam, Xiaoming Wang (1997)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Tosio Kato, Gustavo Ponce (1986)
Revista Matemática Iberoamericana
Similarity:
In this paper we show that the Euler equation for incompressible fluids in R2 is well posed in the (vector-valued) Lebesgue spaces Ls p = (1 - ∆)-s/2 Lp(R2) with s > 1 + 2/p, 1 < p < ∞ and that the same is true of the Navier-Stokes equation uniformly in the viscosity ν.
Jens Frehse, Michael Růžička (1996)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity: