Large deviations for rough paths of the fractional brownian motion
Annie Millet, Marta Sanz-Solé (2006)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Annie Millet, Marta Sanz-Solé (2006)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
R. J. Williams, W. A. Zheng (1990)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
C. Mueller, E. Perkins (2000)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
R. A. Doney, R. A. Maller (2004)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
L. Decreusefond, N. Savy (2006)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Ivan Nourdin, David Nualart, Ciprian A. Tudor (2010)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
In this paper, we prove some central and non-central limit theorems for renormalized weighted power variations of order ≥2 of the fractional brownian motion with Hurst parameter ∈(0, 1), where is an integer. The central limit holds for 1/2<≤1−1/2, the limit being a conditionally gaussian distribution. If <1/2 we show the convergence in 2 to a limit which only depends on the fractional brownian motion, and if >1−1/2 we show the convergence in 2 to a stochastic integral...