Oscillations non linéaires des systèmes hyperboliques : méthodes et résultats qualitatifs
Denis Serre (1991)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Denis Serre (1991)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
L. Tartar (1977-1978)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Michel Valadier (1980)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
J.J. Moreau (1965)
Bulletin de la Société Mathématique de France
Similarity:
D. Serre (1990-1991)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
L. Tartar (1981-1982)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Yves Benoist (2003)
Publications Mathématiques de l'IHÉS
Similarity:
Every bounded convex open set Ω of is endowed with its Hilbert metric . We give a necessary and sufficient condition, called quasisymmetric convexity, for this metric space to be hyperbolic. As a corollary, when the boundary is real analytic, Ω is always hyperbolic. In dimension 2, this condition is: in affine coordinates, the boundary ∂Ω is locally the graph of a C strictly convex function whose derivative is quasisymmetric.