Energy spectrum of certain harmonic mappings
Toshiaki Adachi, Toshikazu Sunada (1985)
Compositio Mathematica
Similarity:
Toshiaki Adachi, Toshikazu Sunada (1985)
Compositio Mathematica
Similarity:
Miodrag Mateljević (2003)
Kragujevac Journal of Mathematics
Similarity:
Atsushi Tachikawa (1983)
Manuscripta mathematica
Similarity:
Bent Fuglede (1978)
Annales de l'institut Fourier
Similarity:
A harmonic morphism between Riemannian manifolds and is by definition a continuous mappings which pulls back harmonic functions. It is assumed that dim dim, since otherwise every harmonic morphism is constant. It is shown that a harmonic morphism is the same as a harmonic mapping in the sense of Eells and Sampson with the further property of being semiconformal, that is, a conformal submersion of the points where vanishes. Every non-constant harmonic morphism is shown to be...
González-Dávila, J.C., Vanhecke, Lieven (1997)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Andrzej Derdziński (1988)
Bulletin de la Société Mathématique de France
Similarity:
Dennis M. Deturck, Jerry L. Kazdan (1981)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Choi, Gundon, Yun, Gabjin (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity: