Smooth singular solutions of hyperplane fields. II
A. S. De Medeiros (1992)
Annales scientifiques de l'École Normale Supérieure
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A. S. De Medeiros (1992)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Laurent Stolovitch (2005)
Publications Mathématiques de l'IHÉS
Similarity:
Let X be a germ of holomorphic vector field at the origin of and vanishing there. We assume that X is a good perturbation of a “nondegenerate” singular completely integrable system. The latter is associated to a family of linear diagonal vector fields which is assumed to have nontrivial polynomial first integrals (they are generated by the so called “resonant monomials”). We show that X admits many invariant analytic subsets in a neighborhood of the origin. These are...
B. Bonnard, I. Kupka (1997)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
Airton S. De Medeiros (2000)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Carlos Gutierrez, Victor Guíñez (1996)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Daniel Panazzolo (2000)
Publicacions Matemàtiques
Similarity:
We study the existence of global canard surfaces for a wide class of real singular perturbation problems. These surfaces define families of solutions which remain near the slow curve as the singular parameter goes to zero.