Displaying similar documents to “Topological superrigidity and Anosov actions of lattices”

Topological conjugacy of locally free 𝐑 n - 1 actions on n -manifolds

David C. Tischler, Rosamond W. Tischler (1974)

Annales de l'institut Fourier

Similarity:

For actions as in the title we associate a collection of rotation numbers. If one of them is sufficiently irrational then the action is conjugate (as an action) to either a linear action on a torus or to an action on a principal T k bundle over T 2 with T k × R 1 orbits.

Invariant connections and invariant holomorphic bundles on homogeneous manifolds

Indranil Biswas, Andrei Teleman (2014)

Open Mathematics

Similarity:

Let X be a differentiable manifold endowed with a transitive action α: A×X→X of a Lie group A. Let K be a Lie group. Under suitable technical assumptions, we give explicit classification theorems, in terms of explicit finite dimensional quotients, of three classes of objects: equivalence classes of α-invariant K-connections on X α-invariant gauge classes of K-connections on X, andα-invariant isomorphism classes of pairs (Q,P) consisting of a holomorphic Kℂ-bundle Q → X and a K-reduction...

A nonlinearizable action of S 3 on 4

Gene Freudenburg, Lucy Moser-Jauslin (2002)

Annales de l’institut Fourier

Similarity:

The main purpose of this article is to give an explicit algebraic action of the group S 3 of permutations of 3 elements on affine four-dimensional complex space which is not conjugate to a linear action.

On quasihomogeneous manifolds – via Brion-Luna-Vust theorem

Marco Andreatta, Jarosław A. Wiśniewski (2003)

Bollettino dell'Unione Matematica Italiana

Similarity:

We consider a smooth projective variety X on which a simple algebraic group G acts with an open orbit. We discuss a theorem of Brion-Luna-Vust in order to relate the action of G with the induced action of G on the normal bundle of a closed orbit of the action. We get effective results in case G = S L n and dim X 2 n - 2 .