Displaying similar documents to “Congruence modules related to Eisenstein series”

On p -adic L -functions of G L ( 2 ) × G L ( 2 ) over totally real fields

Haruzo Hida (1991)

Annales de l'institut Fourier

Similarity:

Let D ( s , f , g ) be the Rankin product L -function for two Hilbert cusp forms f and g . This L -function is in fact the standard L -function of an automorphic representation of the algebraic group G L ( 2 ) × G L ( 2 ) defined over a totally real field. Under the ordinarity assumption at a given prime p for f and g , we shall construct a p -adic analytic function of several variables which interpolates the algebraic part of D ( m , f , g ) for critical integers m , regarding all the ingredients m , f and g as variables.

Endomorphism algebras of motives attached to elliptic modular forms

Alexander F. Brown, Eknath P. Ghate (2003)

Annales de l’institut Fourier

Similarity:

We study the endomorphism algebra of the motive attached to a non-CM elliptic modular cusp form. We prove that this algebra has a sub-algebra isomorphic to a certain crossed product algebra X . The Tate conjecture predicts that X is the full endomorphism algebra of the motive. We also investigate the Brauer class of X . For example we show that if the nebentypus is real and p is a prime that does not divide the level, then the local behaviour of X at a place lying above p is essentially...