Anti-cyclotomic Katz p -adic L -functions and congruence modules

H. Hida; J. Tilouine

Annales scientifiques de l'École Normale Supérieure (1993)

  • Volume: 26, Issue: 2, page 189-259
  • ISSN: 0012-9593

How to cite


Hida, H., and Tilouine, J.. "Anti-cyclotomic Katz $p$-adic $L$-functions and congruence modules." Annales scientifiques de l'École Normale Supérieure 26.2 (1993): 189-259. <>.

author = {Hida, H., Tilouine, J.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {congruence modules; Katz -adic -functions; -adic theta series; interpolation; -adic Rankin product; -adic Eisenstein measures; -adic Hecke algebra; anti-cyclotomic main conjecture for CM-fields; divisibility of characteristic power series of congruence module; Iwasawa main conjecture for CM-fields},
language = {eng},
number = {2},
pages = {189-259},
publisher = {Elsevier},
title = {Anti-cyclotomic Katz $p$-adic $L$-functions and congruence modules},
url = {},
volume = {26},
year = {1993},

AU - Hida, H.
AU - Tilouine, J.
TI - Anti-cyclotomic Katz $p$-adic $L$-functions and congruence modules
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1993
PB - Elsevier
VL - 26
IS - 2
SP - 189
EP - 259
LA - eng
KW - congruence modules; Katz -adic -functions; -adic theta series; interpolation; -adic Rankin product; -adic Eisenstein measures; -adic Hecke algebra; anti-cyclotomic main conjecture for CM-fields; divisibility of characteristic power series of congruence module; Iwasawa main conjecture for CM-fields
UR -
ER -


  1. [D1] P. DELIGNE, Equations différentielles à points singuliers réguliers (Lec. Notes in Math., No. 163, Springer, 1970). Zbl0244.14004MR54 #5232
  2. [DH] K. DOI and H. HIDA, On a Certain Congruence of Cusp Forms and the Special Values of their Dirichlet Series, unpublished, 1979. 
  3. [DR] P. DELIGNE and K. A. RIBET, Values of Abelian L-functions at Negative Integers Over Totally Real Field (Invent. Math., Vol. 59, 1980, pp. 227-286). Zbl0434.12009MR81m:12019
  4. [G] P. B. GARRETT, Holomorphic Hilbert Modular Forms, Wadsworth & Brooks/Cole, 1990. Zbl0685.10021MR90k:11058
  5. [GJ] S. GELBART and H. JACQUET, A Relation Between Automorphic Representations of GL(2) and GL(3) (Ann. Scient. Éc. Norm. Sup., 4e série, T. 11, 1978, pp. 471-542). Zbl0406.10022MR81e:10025
  6. [H1] H. HIDA, On p-adic L-functions of GL(2) × GL(2) Over Totally Real Fields (Ann. Institut Fourier, Vol. 41, 1991, pp. 311-391). Zbl0725.11025MR93b:11052
  7. [H2] H. HIDA, On p-adic Hecke Algebras for GL2 Over Totally Real Fields (Ann. of Math., Vol. 128, 1988, pp. 295-384). Zbl0658.10034MR89m:11046
  8. [H3] H. HIDA, On Nearly Ordinary Hecke Algebras for GL(2) Over Totally Real Fields (Advanced Study in Pure Math., Vol. 17, 1989, pp. 139-169). Zbl0742.11026MR92f:11064
  9. [H4] H. HIDA, Congruences of Cusp Forms and Special Values of their Zeta Functions (Inventiones Math., Vol. 63, 1981, pp. 225-261). Zbl0459.10018MR82g:10044
  10. [H5] H. HIDA, p-adic L-Functions for Base Change Lifts of GL2 to GL3, to appear in Proc. Ann Arbor Conference on Automorphic forms, Shimura Varieties, and L-functions, 1988, vol. II, pp. 93-142, Perspectives in Math., 11, 1990. Zbl0705.11033
  11. [H6] H. HIDA, Modules of Congruence of Hecke Algebras and L-functions Associated with Cusp Forms (Amer. J. Math., Vol. 110, 1988, pp. 323-382). Zbl0645.10029MR89i:11058
  12. [HT1] H. HIDA and J. TILOUINE, Katz p-adic L-functions, Congruence Modules and Deformation of Galois Representations (Proceedings of Durham Symposium on Arithmetic of L-functions, 1989). Zbl0739.11022
  13. [HT2] H. HIDA and J. TILOUINE, On the Anti-cyclotomic Main Conjecture for CM Fields, preprint. Zbl0819.11047
  14. [K1] N. M. KATZ, Travaux de Dwork (Séminaire Bourbaki, 409, 1972). 
  15. [K2] N. M. KATZ, Nilpotent Connections and the Monodromy Theorem. Applications of a Result of Turrittin (Publ. Math. I.H.E.S., Vol. 39, 1970, pp. 175-232). Zbl0221.14007MR45 #271
  16. [K3] N. M. KATZ, Serre-Tate Local Moduli, in Surfaces algébriques (Lecture Notes in Math., No. 868, Springer, 1978, pp. 138-202. Zbl0477.14007MR83k:14039b
  17. [K4] N. M. KATZ, p-adic L-functions for CM Fields (Invent. Math., Vol. 49, 1878, pp. 199-297). Zbl0417.12003MR80h:10039
  18. [KO] N. M. KATZ, and T. ODA, On the Differentiation of the De Rham Cohomology Classes with Respect to Parameters (J. Math. Kyoto Univ., Vol. 8, 1968, pp. 199-213). Zbl0165.54802MR38 #5792
  19. [Kn] D. KNUTSON, Algebraic Spaces (Springer Lecture Notes in Math., No. 203). Zbl0221.14001MR46 #1791
  20. [M] D. MUMFORD, An Analytic Construction of Degenerating Abelian Varieties Over Complete Rings (Comp. Math., Vol. 24, 1972, pp. 239-272). Zbl0241.14020MR50 #4593
  21. [MT] B. MAZUR and J. TILOUINE, Représentations galoisiennes, différentielles de Kähler et conjectures principales (Publ. I.H.E.S., No. 71, 1990, pp. 65-103). Zbl0744.11053MR92e:11060
  22. [R] M. RAPOPORT, Compactifications de l'espace de modules de Hilbert-Blumenthal (Composition Math., Vol. 36, 1978, pp. 255-335). Zbl0386.14006MR80j:14009
  23. [Sch] C.-G. SCHMIDT, P-adic Measures Attached to Automorphic Representations of GL(3) [Inventiones Math., Vol. 92, 1988, pp. 597-631]. Zbl0656.10023MR90f:11032
  24. [Sh] G. SHIMURA, On Some Arithmetic Properties of Modular Forms of One and Several Variables (Ann. of Math., Vol. 102, 1975, pp. 491-515). Zbl0327.10028MR58 #10758
  25. [T] J. TILOUINE, Sur la conjecture principale anticyclotomique (Duke Math. J., Vol. 59, 1989, pp. 629-673). Zbl0707.11079MR91b:11118
  26. [W] A. WEIL, Basic Number Theory, Springer, 1974. Zbl0326.12001MR55 #302
  27. [Y] H. YOSHIDA, On the Representation of the Galois Groups Obtained from Hilbert Modular Forms (Thesis, Princeton University, 1973). 

Citations in EuDML Documents

  1. Haruzo Hida, p -adic ordinary Hecke algebras for GL ( 2 )
  2. Thanasis Bouganis, Non-abelian p -adic L -functions and Eisenstein series of unitary groups – The CM method
  3. Mladen Dimitrov, Galois representations modulo p and cohomology of Hilbert modular varieties
  4. Haruzo Hida, On the search of genuine p -adic modular L -functions for G L ( n ) . With a correction to: On p -adic L -functions of G L ( 2 ) × G L ( 2 ) over totally real fields
  5. Pierre Colmez, La conjecture de Birch et Swinnerton-Dyer 𝐩 -adique

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.