Trace inequalities for Carnot-Carathéodory spaces and applications
Donatella Danielli, Nicola Garofalo, Duy-Minh Nhieu (1998)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Donatella Danielli, Nicola Garofalo, Duy-Minh Nhieu (1998)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Guozhen Lu (1996)
Publicacions Matemàtiques
Similarity:
S. Chanillo, R. L. Wheeden (1988)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Oscar Salinas (1991)
Revista Matemática Iberoamericana
Similarity:
The main purpose of this work is to obtain a Harnack inequality and estimates for the Green function for the general class of degenerate elliptic operators described below.
Bruno Franchi, Ermanno Lanconelli (1983)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Guozhen Lu (1992)
Revista Matemática Iberoamericana
Similarity:
In this paper we mainly prove weighted Poincaré inequalities for vector fields satisfying Hörmander's condition. A crucial part here is that we are able to get a pointwise estimate for any function over any metric ball controlled by a fractional integral of certain maximal function. The Sobolev type inequalities are also derived. As applications of these weighted inequalities, we will show the local regularity of weak solutions for certain classes of strongly degenerate differential...
Vittorio Scornazzani (1989)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Stephen M. Buckley, Pekka Koskela, Guozhen Lu (1995)
Publicacions Matemàtiques
Similarity:
We obtain (weighted) Poincaré type inequalities for vector fields satisfying the Hörmander condition for p < 1 under some assumptions on the subelliptic gradient of the function. Such inequalities hold on Boman domains associated with the underlying Carnot- Carathéodory metric. In particular, they remain true for solutions to certain classes of subelliptic equations. Our results complement the earlier results in these directions for p ≥ 1.