Liquid crystals : relaxed energies, dipoles, singular lines and singular points
M. Giaquinta, G. Modica, J. Souček (1990)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
M. Giaquinta, G. Modica, J. Souček (1990)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Mariano Giaquinta, Domenico Mucci (2006)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Let be a smooth compact oriented riemannian manifoldwithout boundary, and assume that its -homology group has notorsion. Weak limits of graphs of smooth maps with equibounded total variation give riseto equivalence classes of cartesian currents in for which we introduce a natural-energy.Assume moreover that the first homotopy group of iscommutative. In any dimension we prove that every element in can be approximatedweakly in the sense of currents by a sequence...
M. Giaquinta (1997)
Journées équations aux dérivées partielles
Similarity:
M. Carriero, A. Leaci (1991)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Danilo Percivale (1992)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Robert Hardt, Tristan Rivière (2003)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Smooth maps between riemannian manifolds are often not strongly dense in Sobolev classes of finite energy maps, and an energy drop in a limiting sequence of smooth maps often is accompanied by the production (or bubbling) of an associated rectifiable current. For finite 2-energy maps from the 3 ball to the 2 sphere, this phenomenon has been well-studied in works of Bethuel-Brezis-Coron and Giaquinta-Modica-Soucek where a finite mass 1 dimensional rectifiable current occurs whose boundary...