The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Cartesian currents and variational problems for mappings into spheres”

The BV-energy of maps into a manifold : relaxation and density results

Mariano Giaquinta, Domenico Mucci (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Let  𝒴   be a smooth compact oriented riemannian manifoldwithout boundary, and assume that its 1 -homology group has notorsion. Weak limits of graphs of smooth maps  u k : B n 𝒴   with equibounded total variation give riseto equivalence classes of cartesian currents in  cart 1 , 1 ( B n 𝒴 )   for which we introduce a natural B V -energy.Assume moreover that the first homotopy group of   𝒴   iscommutative. In any dimension   n   we prove that every element  T   in   cart 1 , 1 ( B n 𝒴 )   can be approximatedweakly in the sense of currents by a sequence...

Connecting topological Hopf singularities

Robert Hardt, Tristan Rivière (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Smooth maps between riemannian manifolds are often not strongly dense in Sobolev classes of finite energy maps, and an energy drop in a limiting sequence of smooth maps often is accompanied by the production (or bubbling) of an associated rectifiable current. For finite 2-energy maps from the 3 ball to the 2 sphere, this phenomenon has been well-studied in works of Bethuel-Brezis-Coron and Giaquinta-Modica-Soucek where a finite mass 1 dimensional rectifiable current occurs whose boundary...