Displaying similar documents to “Solution of the ¯ -equation on non-smooth strictly q -concave domains with Hölder estimates and the Andreotti-Vesentini separation theorem”

C k -estimates for the ¯ -equation on concave domains of finite type

William Alexandre (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

C k estimates for convex domains of finite type in n are known from [] for k = 0 and from [] for k > 0 . We want to show the same result for concave domains of finite type. As in the case of strictly pseudoconvex domain, we fit the method used in the convex case to the concave one by switching z and ζ in the integral kernel of the operator used in the convex case. However the kernel will not have the same behavior on the boundary as in the Diederich-Fischer-Fornæss-Alexandre work....

On the second order derivatives of convex functions on the Heisenberg group

Cristian E. Gutiérrez, Annamaria Montanari (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In the euclidean setting the celebrated Aleksandrov-Busemann-Feller theorem states that convex functions are a.e. twice differentiable. In this paper we prove that a similar result holds in the Heisenberg group, by showing that every continuous –convex function belongs to the class of functions whose second order horizontal distributional derivatives are Radon measures. Together with a recent result by Ambrosio and Magnani, this proves the existence a.e. of second order horizontal derivatives...

The Space of Differences of Convex Functions on [0, 1]

Zippin, M. (2000)

Serdica Mathematical Journal

Similarity:

∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University, College Station, Texas, 2000. Research partially supported by the Edmund Landau Center for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation (Germany). The space K[0, 1] of differences of convex functions on the closed interval [0, 1] is investigated as a dual Banach space. It is proved that a continuous function f on [0, 1] belongs to K[0, 1] ...

A Clarke–Ledyaev Type Inequality for Certain Non–Convex Sets

Ivanov, M., Zlateva, N. (2000)

Serdica Mathematical Journal

Similarity:

We consider the question whether the assumption of convexity of the set involved in Clarke-Ledyaev inequality can be relaxed. In the case when the point is outside the convex hull of the set we show that Clarke-Ledyaev type inequality holds if and only if there is certain geometrical relation between the point and the set.