The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A convex Darboux theorem”

Generically strongly q -convex complex manifolds

Terrence Napier, Mohan Ramachandran (2001)

Annales de l’institut Fourier

Similarity:

Suppose ϕ is a real analytic plurisubharmonic exhaustion function on a connected noncompact complex manifold X . The main result is that if the real analytic set of points at which ϕ is not strongly q -convex is of dimension at most 2 q + 1 , then almost every sufficiently large sublevel of ϕ is strongly q -convex as a complex manifold. For X of dimension 2 , this is a special case of a theorem of Diederich and Ohsawa. A version for ϕ real analytic with corners is also obtained.

On a generalization of close-to-convex functions

Swadesh Kumar Sahoo, Navneet Lal Sharma (2015)

Annales Polonici Mathematici

Similarity:

The paper of M. Ismail et al. [Complex Variables Theory Appl. 14 (1990), 77-84] motivates the study of a generalization of close-to-convex functions by means of a q-analog of the difference operator acting on analytic functions in the unit disk 𝔻 = {z ∈ ℂ:|z| < 1}. We use the term q-close-to-convex functions for the q-analog of close-to-convex functions. We obtain conditions on the coefficients of power series of functions analytic in the unit disk which ensure that they generate...