The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Une remarque sur l’unicité des solutions des équations de Navier-Stokes en dimension n

Solutions des équations de Navier-Stokes incompressibles dans un domaine exterieur.

Nicolas Depauw (2001)

Revista Matemática Iberoamericana

Similarity:

Nous exposons dans cet article l'analogue de ces résultats d'existence pour l'équation de Navier-Stokes [Cannone (4), Cannone et Planchon (27, 5, 28)], mais sur un domaine extérieur Ω, complémentaire d'un compact à bord lisse. Les deux difficultés nouvelles qui se présentent sont l'absence d'une représentation explicite en Fourier du semi-groupe associé à l'opérateur de Stokes et la nécessité de transposer la notion d'espace de Besov homogène.

Comportement à l'infini des solutions des équations de Navier-Stokes et propriété des ensembles fonctionnels invariants (ou attracteurs)

Colette Guillopé (1982)

Annales de l'institut Fourier

Similarity:

Les données, i.e. l’ouvert Ω et la force appliquée f , sont supposées de classe 𝒞 . Il est montré que toute solution des équations de Navier-Stokes dans l’ouvert Ω , bornée dans H 1 ( Ω ) N ( N = 2 ou 3 ) sur un intervalle de temps semi-infini ( t 0 + ) , est aussi bornée, pour t + , dans tous les espaces H m ( Ω ) N . Il en résulte que tout ensemble fonctionnel invariant ou attracteur borné dans H 1 ( Ω ) ( N (ou même H 1 / 2 + ϵ ( Ω ) N , ϵ > 0 ) est porté par 𝒞 ( Ω ) . Le cas où les forces appliquées dérivent d’un potentiel (i.e. f = 0 ) est abordé : il est montré que...