Displaying similar documents to “Quasi-analyticité et approximation sur la frontière d'un ouvert quelconque, dans la théorie axiomatique des fonctions harmoniques”

Approximation et caractère de quasi-analyticité dans la théorie axiomatique des fonctions harmoniques

A. de La Pradelle (1967)

Annales de l'institut Fourier

Similarity:

Dans le cadre de l’axiomatique de M. Brelot, et en utilisant la théorie des fonctions harmoniques adjointes de Madame R.M. Hervé, on caractérise la propriété de quasi-analycité notée A *  : toute fonction harmonique adjointe dans un domaine est nulle dès qu’elle est nulle au voisinage d’un point. On montre que A * est équivalente à une propriété d’approximation de toute fonction réelle finie continue sur les frontières d’ouverts relativement compacts. Cette approximation est réalisée à l’aide...

Les fonctions surharmoniques associées à un opérateur elliptique du second ordre à coefficients discontinus

Rose-Marie Hervé, Michel Hervé (1969)

Annales de l'institut Fourier

Similarity:

On étend aux solutions et sursolutions locales d’une équation elliptique de la forme - i u x i + j a i j u x i + d j u + i b i u x i + c u = 0 les propriétés démontrées dans le cas d i = b i = c = 0  : les solutions locales forment un système de fonctions harmoniques satisfaisant à l’axiomatique de M. Brelot, les fonctions surharmoniques coïncidant p.p. avec les sursolutions locales ; un principe du maximum pour les fonctions sous-harmoniques majorées par une fonction ϵ W 0 1 , 2  ; la stabilité par balayage sur un ensemble quelconque des fonctions...

Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel

Rose-Marie Hervé (1962)

Annales de l'institut Fourier

Similarity:

Ces recherches prolongent l’axiomatique des fonctions harmoniques de M. Brelot. Dans un espace Ω localement compact, connexe et localement connexe, qu’on supposera le plus souvent à base dénombrable, les fonctions harmoniques satisfont à trois axiomes : le 1er est un axiome de faisceau ; le 2e pose l’existence d’une base de la topologie formée de domaines réguliers, c’est-à-dire pour lesquels le problème de Dirichlet admet une solution unique, croissant avec la donnée ; le...

Les fonctions surharmoniques dans l'axiomatique de M. Brelot associées à un opérateur elliptique dégénéré

Michel Hervé, Rose-Marie Hervé (1972)

Annales de l'institut Fourier

Similarity:

Soit l’opérateur elliptique dégénéré L , du type considéré par J.-M. Bony dans ses travaux récents (par ex. Conférences du C.I.M.E., Stresa, juillet 1969), tel que le faisceau associé de fonctions harmoniques vérifie les axiomes de Brelot : on montre que les fonctions surharmoniques associées u sont localement intégrables et caractérisées par L u 0 , et que les potentiels à support ponctuel donné sont proportionnels.