The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Points rationnels des courbes génériques de 3 . I”

Courbes lisses sur les surfaces rationnelles génériques : un lemme d'Horace différentiel

Thierry Mignon (2000)

Annales de l'institut Fourier

Similarity:

Nous démontrons un lemme permettant d’étudier l’irréductibilité et la lissité (hors des singularités prescrites) de la courbe plane générique de degré d passant par r points génériques avec des multiplicités m 1 , ... , m r fixées par avance. Ce lemme repose sur la “méthode d’Horace”, introduite par A. Hirschowitz. Il est appliqué ici à l’étude des courbes de genre inférieur ou égal à 4 .

Courbes rationnelles sur les variétés homogènes

Nicolas Perrin (2002)

Annales de l’institut Fourier

Similarity:

Soit X une variété homogène sous un groupe G . Nous étudions les orbites maximales de X sous l’action d’un parabolique de G . Nous les décomposons en fibrations affines et projectives. Cette description permet de montrer que le schéma de Hilbert des courbes rationnelles lisses de classe fixée est non vide et irréductible.