The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Examples of non-ample normal bundles”

Geometric genera for ample vector bundles with regular sections.

Antonio Lanteri (2000)

Revista Matemática Complutense

Similarity:

Let X be a smooth complex projective variety of dimension n ≥ 3. A notion of geometric genus p(X,E) for ample vector bundles E of rank r < n on X admitting some regular sections is introduced. The following inequality holds: p(X,E) ≥ h(X). The question of characterizing equality is discussed and the answer is given for E decomposable of corank 2. Some conjectures suggested by the result are formulated.

Remarks on Seshadri constants of vector bundles

Christopher Hacon (2000)

Annales de l'institut Fourier

Similarity:

We give a lower bound for the Seshadri constants of ample vector bundles which depends only on the numerical properties of the Chern classes and on a “stability” condition.

On generation of jets for vector bundles.

Mauro C. Beltrametti, Sandra Di Rocco, Andrew J. Sommese (1999)

Revista Matemática Complutense

Similarity:

We introduce and study the k-jet ampleness and the k-jet spannedness for a vector bundle, E, on a projective manifold. We obtain different characterizations of projective space in terms of such positivity properties for E. We compare the 1-jet ampleness with different notions of very ampleness in the literature.

Poincaré bundles for projective surfaces

Nicole Mestrano (1985)

Annales de l'institut Fourier

Similarity:

Let X be a smooth projective surface, K the canonical divisor, H a very ample divisor and M H ( c 1 , c 2 ) the moduli space of rank-two vector bundles, H -stable with Chern classes c 1 and c 2 . We prove that, if there exists c 1 ' such that c 1 is numerically equivalent to 2 c 1 ' and if c 2 - 1 4 c 1 2 is even, greater or equal to H 2 + H K + 4 , then there is no Poincaré bundle on M H ( c 1 , c 2 ) × X . Conversely, if there exists c 1 ' such that the number c 1 ' · c 1 is odd or if 1 2 c 1 2 - 1 2 c 1 · K - c 2 is odd, then there exists a Poincaré bundle on M H ( c 1 , c 2 ) × X .