The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the Betti numbers of perfect ideals”

Fiber cones and the integral closure of ideals.

R. Hübl, C. Huneke (2001)

Collectanea Mathematica

Similarity:

Let (R,m) be a Noetherian local ring and let I C R be an ideal. This paper studies the question of when m I is integrally closed. Particular attention is focused on the case R is a regular local ring and I is a reduced ideal. This question arose through a question posed by Eisenbud and Mazur on the existence of evolutions.

Stanley depth of monomial ideals with small number of generators

Mircea Cimpoeaş (2009)

Open Mathematics

Similarity:

For a monomial ideal I ⊂ S = K[x 1...,x n], we show that sdepth(S/I) ≥ n − g(I), where g(I) is the number of the minimal monomial generators of I. If I =νI′, where ν ∈ S is a monomial, then we see that sdepth(S/I) = sdepth(S/I′). We prove that if I is a monomial ideal I ⊂ S minimally generated by three monomials, then I and S/I satisfy the Stanley conjecture. Given a saturated monomial ideal I ⊂ K[x 1,x 2,x 3] we show that sdepth(I) = 2. As a consequence, sdepth(I) ≥ sdepth(K[x 1,x 2,x...