Displaying similar documents to “Approximation of control problems involving ordinary and impulsive controls”

Numerical procedure to approximate a singular optimal control problem

Silvia C. Di Marco, Roberto L.V. González (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this work we deal with the numerical solution of a Hamilton-Jacobi-Bellman (HJB) equation with infinitely many solutions. To compute the maximal solution – the optimal cost of the original optimal control problem – we present a complete discrete method based on the use of some finite elements and penalization techniques.

Approximate maximum principle for discrete approximations of optimal control systems with nonsmooth objectives and endpoint constraints

Boris S. Mordukhovich, Ilya Shvartsman (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The paper studies discrete/finite-difference approximations of optimal control problems governed by continuous-time dynamical systems with endpoint constraints. Finite-difference systems, considered as parametric control problems with the decreasing step of discretization, occupy an intermediate position between continuous-time and discrete-time (with fixed steps) control processes and play a significant role in both qualitative and numerical aspects of optimal control. In this paper...

Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space

Pedro Merino, Fredi Tröltzsch, Boris Vexler (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The finite element approximation of optimal control problems for semilinear elliptic partial differential equation is considered, where the control belongs to a finite-dimensional set and state constraints are given in finitely many points of the domain. Under the standard linear independency condition on the active gradients and a strong second-order sufficient optimality condition, optimal error estimates are derived for locally optimal controls.

An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints

Michael Kieweg, Yuri Iliash, Ronald H. W. Hoppe, Michael Hintermüller (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the error analysis further invokes data oscillations. We prove reliability and efficiency of the...

Some applications of optimal control theory of distributed systems

Alfredo Bermudez (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we present some applications of the J.-L. Lions’ optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control

Optimality and sensitivity for semilinear bang-bang type optimal control problems

Ursula Felgenhauer (2004)

International Journal of Applied Mathematics and Computer Science

Similarity:

In optimal control problems with quadratic terminal cost functionals and systems dynamics linear with respect to control, the solution often has a bang-bang character. Our aim is to investigate structural solution stability when the problem data are subject to perturbations. Throughout the paper, we assume that the problem has a (possibly local) optimum such that the control is piecewise constant and almost everywhere takes extremal values. The points of discontinuity are the switching...