Integrability obstructions for extensions of Lie algebroids
Kirill Mackenzie (1987)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Kirill Mackenzie (1987)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Tahar Mokri (1996)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Ronald Brown, Osman Mucuk (1995)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Jan Kubarski (1982)
Colloquium Mathematicae
Similarity:
Ivan Kolář (2007)
Banach Center Publications
Similarity:
For every Lie groupoid Φ with m-dimensional base M and every fiber product preserving bundle functor F on the category of fibered manifolds with m-dimensional bases and fiber preserving maps with local diffeomorphisms as base maps, we construct a Lie groupoid ℱ Φ over M. Every action of Φ on a fibered manifold Y → M is extended to an action of ℱ Φ on FY → M.
Ivan, Gheorghe (2001)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Vassiliou, Efstathios, Nikolopoulos, Apostolos (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
R. A. Bowshell (1971)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Jure Kališnik (2011)
Czechoslovak Mathematical Journal
Similarity:
The classical Serre-Swan's theorem defines an equivalence between the category of vector bundles and the category of finitely generated projective modules over the algebra of continuous functions on some compact Hausdorff topological space. We extend these results to obtain a correspondence between the category of representations of an étale Lie groupoid and the category of modules over its Hopf algebroid that are of finite type and of constant rank. Both of these constructions are functorially...