Displaying similar documents to “Singular limits for the compressible Euler equation in an exterior domain”

The mathematical theory of low Mach number flows

Steven Schochet (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The mathematical theory of the passage from compressible to incompressible fluid flow is reviewed.

Low Mach number limit of a compressible Euler-Korteweg model

Yajie Wang, Jianwei Yang (2023)

Applications of Mathematics

Similarity:

This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained.

A generalization of the classical Euler and Korteweg fluids

Kumbakonam R. Rajagopal (2023)

Applications of Mathematics

Similarity:

The aim of this short paper is threefold. First, we develop an implicit generalization of a constitutive relation introduced by Korteweg (1901) that can describe the phenomenon of capillarity. Second, using a sub-class of the constitutive relations (implicit Euler equations), we show that even in that simple situation more than one of the members of the sub-class may be able to describe one or a set of experiments one is interested in describing, and we must determine which amongst these...

On global motion of a compressible barotropic viscous fluid with boundary slip condition

Takayuki Kobayashi, Wojciech Zajączkowski (1999)

Applicationes Mathematicae

Similarity:

Global-in-time existence of solutions for equations of viscous compressible barotropic fluid in a bounded domain Ω ⊂ 3 with the boundary slip condition is proved. The solution is close to an equilibrium solution. The proof is based on the energy method. Moreover, in the L 2 -approach the result is sharp (the regularity of the solution cannot be decreased) because the velocity belongs to H 2 + α , 1 + α / 2 ( Ω × + ) and the density belongs to H 1 + α , 1 / 2 + α / 2 ( Ω × + ) , α ∈ (1/2,1).