Cartesian currents and variational problems for mappings into spheres
M. Giaquinta, G. Modica, J. Souček (1989)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
M. Giaquinta, G. Modica, J. Souček (1989)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Mariano Giaquinta, Giuseppe Modica, Jiří Souček (1994)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We discuss variational problems for the -Dirichlet integral, non integer, for maps between manifolds, illustrating the role played by the geometry of the target manifold in their weak formulation.
Souček, J.
Similarity:
Fang Hua Lin (1996)
Journées équations aux dérivées partielles
Similarity:
Mariano Giaquinta, Domenico Mucci (2006)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Let be a smooth compact oriented riemannian manifoldwithout boundary, and assume that its -homology group has notorsion. Weak limits of graphs of smooth maps with equibounded total variation give riseto equivalence classes of cartesian currents in for which we introduce a natural-energy.Assume moreover that the first homotopy group of iscommutative. In any dimension we prove that every element in can be approximatedweakly in the sense of currents by a sequence...
Miao, Pengzi (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity: