Cartesian currents and variational problems for mappings into spheres
M. Giaquinta, G. Modica, J. Souček (1989)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
M. Giaquinta, G. Modica, J. Souček (1989)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Mariano Giaquinta, Giuseppe Modica, Jiří Souček (1994)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We discuss variational problems for the -Dirichlet integral, non integer, for maps between manifolds, illustrating the role played by the geometry of the target manifold in their weak formulation.
Souček, J.
Similarity:
Fang Hua Lin (1996)
Journées équations aux dérivées partielles
Similarity:
Mariano Giaquinta, Domenico Mucci (2006)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Let be a smooth compact oriented riemannian manifoldwithout boundary, and assume that its -homology group has notorsion. Weak limits of graphs of smooth maps with equibounded total variation give riseto equivalence classes of cartesian currents in for which we introduce a natural-energy.Assume moreover that the first homotopy group of iscommutative. In any dimension we prove that every element in can be approximatedweakly in the sense of currents by a sequence...
Miao, Pengzi (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity: