The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Analytic regularity for the Bergman kernel”

On the analyticity of generalized eigenfunctions (case of real variables)

Eberhard Gerlach (1968)

Annales de l'institut Fourier

Similarity:

On démontre que, dans les espaces fonctionnels propres de Hilbert (avec un noyau reproduisant), formés de fonctions analytiques de n variables dans un domaine G , pour tout opérateur auto-adjoint, les fonctions propres généralisées sont des fonctions réelles-analytiques dans G .

Failure of analytic hypoellipticity in a class of differential operators

Ovidiu Costin, Rodica D. Costin (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

For the hypoelliptic differential operators P = x 2 + x k y - x l t 2 introduced by T. Hoshiro, generalizing a class of M. Christ, in the cases of k and l left open in the analysis, the operators P also fail to be analytic hypoelliptic (except for ( k , l ) = ( 0 , 1 ) ), in accordance with Treves’ conjecture. The proof is constructive, suitable for generalization, and relies on evaluating a family of eigenvalues of a non-self-adjoint operator.

Overstability and resonance

Augustin Fruchard, Reinhard Schäfke (2003)

Annales de l’institut Fourier

Similarity:

We consider a singularity perturbed nonlinear differential equation ε u ' = f ( x ) u + + ε P ( x , u , ε ) which we suppose real analytic for x near some interval [ a , b ] and small | u | , | ε | . We furthermore suppose that 0 is a turning point, namely that x f ( x ) is positive if x 0 . We prove that the existence of nicely behaved (as ϵ 0 ) local (at x = 0 ) or global, real analytic or C solutions is equivalent to the existence of a formal series solution u n ( x ) ε n with u n analytic at x = 0 . The main tool of a proof is a new “principle of analytic continuation” for...

Analytic disks with boundaries in a maximal real submanifold of 𝐂 2

Franc Forstneric (1987)

Annales de l'institut Fourier

Similarity:

Let M be a two dimensional totally real submanifold of class C 2 in C 2 . A continuous map F : Δ C 2 of the closed unit disk Δ C into C 2 that is holomorphic on the open disk Δ and maps its boundary b Δ into M is called an analytic disk with boundary in M . Given an initial immersed analytic disk F 0 with boundary in M , we describe the existence and behavior of analytic disks near F 0 with boundaries in small perturbations of M in terms of the homology class of the closed curve F 0 ( b Δ ) in M . We also prove a regularity...

Finitely generated ideals in A ( ω )

John Erik Fornaess, M. Ovrelid (1983)

Annales de l'institut Fourier

Similarity:

The Gleason problem is solved on real analytic pseudoconvex domains in C 2 . In this case the weakly pseudoconvex points can be a two-dimensional subset of the boundary. To reduce the Gleason problem to a question it is shown that the set of Kohn-Nirenberg points is at most one-dimensional. In fact, except for a one-dimensional subset, the weakly pseudoconvex boundary points are R -points as studied by Range and therefore allow local sup-norm estimates for .

On the Pythagoras numbers of real analytic set germs

José F. Fernando, Jesús M. Ruiz (2005)

Bulletin de la Société Mathématique de France

Similarity:

We show that (i) the Pythagoras number of a real analytic set germ is the supremum of the Pythagoras numbers of the curve germs it contains, and (ii) every real analytic curve germ is contained in a real analytic surface germ with the same Pythagoras number (or Pythagoras number 2 if the curve is Pythagorean). This gives new examples and counterexamples concerning sums of squares and positive semidefinite analytic function germs.