Displaying similar documents to “Sur la résolution de l’équation transcendante a x + b x = c x

Grand concours de 1852

Jean Barjou (1852)

Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale

Similarity:

Sur les entiers N pour lesquels il y a beaucoup de groupes abéliens d’ordre N

Jean-Louis Nicolas (1978)

Annales de l'institut Fourier

Similarity:

Soit a ( n ) le nombre de groupes abéliens d’ordre n . Pour étudier les grandes valeurs prises par a ( n ) , on définit, comme l’a fait Ramanujan pour le nombre de diviseurs de n , les nombres a -hautement composés et a -hautement composés supérieurs. Pour calculer ces derniers nombres, on détermine les sommets de l’enveloppe inférieure convexe de la fonction log P ( n ) P ( n ) est le nombre de partitions de n . Sous l’hypothèse de Riemann, on donne un développement asymptotique de l’ordre maximum de la fonction...

Sur les nombres premiers généralisés de Beurling. Preuve d'une conjecture de Bateman et Diamond

Jean-Pierre Kahane (1997)

Journal de théorie des nombres de Bordeaux

Similarity:

Soit P une partie discrète et multiplicativement libre de la demi-droite ouverte ] 1 , [ , et N le semi-groupe unitaire engendré par P . Les éléments de P s’appellent nombres premiers généralisés et ceux de N entiers généralisés. Les fonctions de décompte correspondantes sont désignées P ( x ) et N ( x ). Le problème de Beurling consiste à donner des conditions sur N ( x ) qui entrainent le “ théorème des nombres premiers ” P ( x ) x / log x ( x ) . En posant N ( x ) = D x + x ϵ ( x ) , la condition de Beurling est ϵ ( x ) = O ( ( log x ) - a ) avec a > 3 2 , et il y a un contre-exemple avec...

Solution à croissance du second problème de Cousin dans n

Henri Skoda (1971)

Annales de l'institut Fourier

Similarity:

Étant donné une hypersurface X de n , on majore la croissance des fonctions entières définissant X . On en déduit qu’une fonction méromorphe f dans n s’écrit comme quotient de deux fonctions entières g et h , dont la croissance est liée à celle de  f .