Displaying 61 – 80 of 84

Showing per page

Torsions of connections on tangent bundles of higher order

Kureš, Miroslav (1998)

Proceedings of the 17th Winter School "Geometry and Physics"

The torsions of a general connection Γ on the r th-order tangent bundle of a manifold M are defined as the Frölicher-Nijenhuis bracket of Γ with the natural affinors. The author deduces the basic properties of these torsions. Then he compares them with the classical torsion of a principal connection on the r th-order frame bundle of M .

Towards one conjecture on collapsing of the Serre spectral sequence

Markl, Martin (1990)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0699.00032.] A fibration F E B is called totally noncohomologuous to zero (TNCZ) with respect to the coefficient field k, if H * ( E ; k ) H * ( F ; k ) is surjective. This is equivalent to saying that π 1 ( B ) acts trivially on H * ( F ; k ) and the Serre spectral sequence collapses at E 2 . S. Halperin conjectured that for c h a r ( k ) = 0 and F a 1-connected rationally elliptic space (i.e., both H * ( F ; 𝒬 ) and π * ( F ) 𝒬 are finite dimensional) such that H * ( F ; k ) vanishes in odd degrees, every fibration F E B is TNCZ. The author proves this being the case...

Transport optimal et courbure de Ricci

Cédric Villani (2005/2006)

Séminaire de théorie spectrale et géométrie

Des liens inattendus ont été récemment mis à jour entre le transport optimal de Monge–Kantorovich et certains problèmes de géométrie riemannienne, en liaison avec la courbure de Ricci. Une des retombées de ces interactions est la naissance d’une théorie « synthétique » des espaces métriques mesurés à courbure de Ricci minorée, venant compléter la théorie classique des espaces métriques à courbure sectionnelle minorée. Dans ce texte (également fourni aux actes du Séminaire d’Équations aux dérivées...

Twistor operators on conformally flat spaces

Somberg, Petr (2001)

Proceedings of the 20th Winter School "Geometry and Physics"

Summary: We describe explicitly the kernels of higher spin twistor operators on standard even dimensional Euclidean space 2 l , standard even dimensional sphere S 2 l , and standard even dimensional hyperbolic space 2 l , using realizations of invariant differential operators inside spinor valued differential forms. The kernels are finite dimensional vector spaces (of the same cardinality) generated by spinor valued polynomials on 2 l , S 2 l , 2 l .

Currently displaying 61 – 80 of 84