Supersymmetry algebras: extensions of orthgonal Lie algebras
Let be an open subset of the complex plane, and let denote a finite-dimensional complex simple Lie algebra. A. A. Belavin and V. G. Drinfel’d investigated non-degenerate meromorphic functions from into which are solutions of the classical Yang-Baxter equation [Funct. Anal. Appl. 16, 159-180 (1983; Zbl 0504.22016)]. They found that (up to equivalence) the solutions depend only on the difference of the two variables and that their set of poles forms a discrete (additive) subgroup of the...
Summary: We show that the symmetrization of a brace algebra structure yields the structure of a symmetric brace algebra. We also show that the symmetrization of the natural brace structure on coincides with the natural symmetric brace structure on , the direct sum of spaces of antisymmetric maps .
Summary: For a large class of classical field models used for realistic quantum field theoretic models, an infinite-dimensional supermanifold of classical solutions in Minkowski space can be constructed. This solution supermanifold carries a natural symplectic structure; the resulting Poisson brackets between the field strengths are the classical prototypes of the canonical (anti-) commutation relations. Moreover, we discuss symmetries and the Noether theorem in this context.