On dimensional properties of infinite-dimensional spaces
In this note, we introduce a new approach to study overlapping domain decomposition methods for optimal control systems governed by partial differential equations. The model considered in our paper is systems governed by wave equations. Our technique could be used for several other equations as well.
Contrary to a statement of Borsuk the author proves that every locally plane Peano continuum is embeddable into a 2-manifold.
Let be a manifold with all structures smooth which admits a metric . Let be a linear connection on such that the associated covariant derivative satisfies for some 1-form on . Then one refers to the above setup as a Weyl structure on and says that the pair fits . If and if fits , then fits . Thus if one thinks of this as a map , then .In this paper, the author attempts to apply Weyl’s idea above to Finsler spaces. A Finsler fundamental function satisfies (i) for...
[For the entire collection see Zbl 0742.00067.]Let be the Lie algebra , and let be the universal enveloping algebra for . Let be the center of . The authors consider the chain of Lie algebras . Then is an associative algebra which is called the Gel’fand-Zetlin subalgebra of . A module is called a -module if , where the summation is over the space of characters of and , , . The authors describe several properties of - modules. For example, they prove that if for some ...
The author previously studied with F. Ilosvay and B. Kis [Publ. Math. 42, 139-144 (1993; Zbl 0796.53022)] the diffeomorphisms between two Finsler spaces and which map the geodesics of to geodesics of (geodesic mappings).Now, he investigates the geodesic mappings between a Finsler space and a Riemannian space . The main result of this paper is as follows: if is of constant curvature and the mapping is a strongly geodesic mapping then or and .
The main result of this paper determines a system of linear partial differential equations of Cauchy type whose solutions correspond exactly to holomorphically projective mappings of a given equiaffine space onto a Kählerian space. The special case of constant holomorphic curvature is also studied.