Walks on countable ordinals and selective ultrafilters
In §1, we observe that a weakly normal ideal has a saturation property; we also show that the existence of certain precipitous ideals is sufficient for the existence of weakly normal ideals. In §2, generalizing Solovay’s theorem concerning strongly compact cardinals, we show that is decided if carries a weakly normal ideal and λ is regular or cf λ ≤ κ. This is applied to solving the singular cardinal hypothesis.