Comparison of the axioms of local and universal choice
Assume that no cardinal κ < 2ω is quasi-measurable (κ is quasi-measurable if there exists a κ-additive ideal of subsets of κ such that the Boolean algebra P(κ)/ satisfies c.c.c.). We show that for a metrizable separable space X and a proper c.c.c. σ-ideal II of subsets of X that has a Borel base, each point-finite cover ⊆ of X contains uncountably many pairwise disjoint subfamilies , with -Bernstein unions ∪ (a subset A ⊆ X is -Bernstein if A and X A meet each Borel -positive subset...
If T is a complete theory stronger than ZF such that axiom of extensionality for classes + T + is consistent for 1 (each alone), where are normal formulae then we show AST + + scheme of choice is consistent. As a consequence we get: there is no proper -formula in AST + scheme of choice. Moreover the complexity of the axioms of AST is studied, e.gẇe show axiom of extensionality is -formula, but not -formula and furthermore prolongation axiom, axioms of choice and cardinalities are -formulae,...
We introduce two generalized condensation principles: Local Club Condensation and Stationary Condensation. We show that while Strong Condensation (a generalized condensation principle introduced by Hugh Woodin) is inconsistent with an ω₁-Erdős cardinal, Stationary Condensation and Local Club Condensation (which should be thought of as weakenings of Strong Condensation) are both consistent with ω-superstrong cardinals.
Silver’s fundamental dichotomy in the classical theory of Borel reducibility states that any Borel (or even co-analytic) equivalence relation with uncountably many classes has a perfect set of classes. The natural generalisation of this to the generalised Baire space for a regular uncountable κ fails in Gödel’s L, even for κ-Borel equivalence relations. We show here that Silver’s dichotomy for κ-Borel equivalence relations in for uncountable regular κ is however consistent (with GCH), assuming...
Answering a question raised by Luis Pereira, we show that a continuous tree-like scale can exist above a supercompact cardinal. We also show that the existence of a continuous tree-like scale at ℵω is consistent with Martin’s Maximum.
Gruenhage asked if it was possible to cover the real line by less than continuum many translates of a compact nullset. Under the Continuum Hypothesis the answer is obviously negative. Elekes and Stepr mans gave an affirmative answer by showing that if is the well known compact nullset considered first by Erdős and Kakutani then ℝ can be covered by cof() many translates of . As this set has no analogue in more general groups, it was asked by Elekes and Stepr mans whether such a result holds for...
We prove that it is consistent that the covering number of the ideal of measure zero sets has countable cofinality.
We formulate a Covering Property Axiom , which holds in the iterated perfect set model, and show that it implies easily the following facts. (a) For every S ⊂ ℝ of cardinality continuum there exists a uniformly continuous function g: ℝ → ℝ with g[S] = [0,1]. (b) If S ⊂ ℝ is either perfectly meager or universally null then S has cardinality less than . (c) cof() = ω₁ < , i.e., the cofinality of the measure ideal is ω₁. (d) For every uniformly bounded sequence of Borel functions there are sequences:...
We construct a compact set C of Hausdorff dimension zero such that cof(𝒩) many translates of C cover the real line. Hence it is consistent with ZFC that less than continuum many translates of a zero-dimensional compact set can cover the real line. This answers a question of Dan Mauldin.
This paper deals with questions of how many compact subsets of certain kinds it takes to cover the space of irrationals, or certain of its subspaces. In particular, given , we consider compact sets of the form , where for all, or for infinitely many, . We also consider “-splitting” compact sets, i.e., compact sets such that for any and , .
Answering a question of Miklós Abért, we prove that an infinite profinite group cannot be the union of less than continuum many translates of a compact subset of box dimension less than 1. Furthermore, we show that it is consistent with the axioms of set theory that in any infinite profinite group there exists a compact subset of Hausdorff dimension 0 such that one can cover the group by less than continuum many translates of it.
It is shown to be consistent that every function of first Baire class can be decomposed into continuous functions yet the least cardinal of a dominating family in is . The model used in the one obtained by adding Miller reals to a model of the Continuum Hypothesis.