On absolutely operations
We investigate the problem of when ≤λ-support iterations of < λ-complete notions of forcing preserve λ⁺. We isolate a property- properness over diamonds-that implies λ⁺ is preserved and show that this property is preserved by λ-support iterations. Our condition is a relative of that presented by Rosłanowski and Shelah in [2]; it is not clear if the two conditions are equivalent. We close with an application of our technology by presenting a consistency result on uniformizing colorings of ladder...
It is consistent with the axioms of set theory that there are two co-dense partial orders, one of them -closed and the other one without a -closed dense subset.
The functor taking global elements of Boolean algebras in the topos of sheaves on a complete Boolean algebra is shown to preserve and reflect injectivity as well as completeness. This is then used to derive a result of Bell on the Boolean Ultrafilter Theorem in -valued set theory and to prove that (i) the category of complete Boolean algebras and complete homomorphisms has no non-trivial injectives, and (ii) the category of frames has no absolute retracts.
The Todorcevic ordering 𝕋(X) consists of all finite families of convergent sequences in a given topological space X. Such an ordering was defined for the special case of the real line by S. Todorcevic (1991) as an example of a Borel ordering satisfying ccc that is not σ-finite cc and even need not have the Knaster property. We are interested in properties of 𝕋(X) where the space X is taken as a parameter. Conditions on X are given which ensure the countable chain condition and its stronger versions...