Laminations, or How to Build a Quantum-Logic-Valued Model of Set Theory.
Our main theorem is about iterated forcing for making the continuum larger than ℵ2. We present a generalization of [2] which deal with oracles for random, (also for other cases and generalities), by replacing ℵ1,ℵ2 by λ, λ + (starting with λ = λ <λ > ℵ1). Well, we demand absolute c.c.c. So we get, e.g. the continuum is λ + but we can get cov(meagre) = λ and we give some applications. As in non-Cohen oracles [2], it is a “partial” countable support iteration but it is c.c.c.
Let X be a compact Hausdorff space and M a metric space. is the set of f ∈ C(X,M) such that there is a dense set of points x ∈ X with f constant on some neighborhood of x. We describe some general classes of X for which is all of C(X,M). These include βℕ, any nowhere separable LOTS, and any X such that forcing with the open subsets of X does not add reals. In the case where M is a Banach space, we discuss the properties of as a normed linear space. We also build three first countable Eberlein...