Some generalizations to two systems of set theory based on combinatory logic.
We show that uncountable cardinals are indistinguishable by sentences of the monadic second-order language of order of the form (∀X)ϕ(X) and (∃X)ϕ(X), for ϕ positive in X and containing no set-quantifiers, when the set variables range over large (= cofinal) subsets of the cardinals. This strengthens the result of Doner-Mostowski-Tarski [3] that (κ,∈), (λ,∈) are elementarily equivalent when κ, λ are uncountable. It follows that we can consistently postulate that the structures , are indistinguishable...
We enlarge the problem of valuations of triads on so called lines. A line in an -structure (it means that is a semigroup and is an automorphism or an antiautomorphism on such that ) is, generally, a sequence , , (where is the class of finite integers) of substructures of such that holds for each . We denote this line as and we say that a mapping is a valuation of the line in a line if it is, for each , a valuation of the triad in . Some theorems on an existence of...