Shelah's Singular Compactness Theorem.
We prove that if is not a Kunen cardinal, then there is a uniform Eberlein compact space K such that the Banach space C(K) does not embed isometrically into . We prove a similar result for isomorphic embeddings. Our arguments are minor modifications of the proofs of analogous results for Corson compacta obtained by S. Todorčević. We also construct a consistent example of a uniform Eberlein compactum whose space of continuous functions embeds isomorphically into , but fails to embed isometrically....