The axiomatic melting point. Teaching probability theory in Prague during the 1930's.
According to a result of Kočinac and Scheepers, the Hurewicz covering property is equivalent to a somewhat simpler selection property: For each sequence of large open covers of the space one can choose finitely many elements from each cover to obtain a groupable cover of the space. We simplify the characterization further by omitting the need to consider sequences of covers: A set of reals X has the Hurewicz property if, and only if, each large open cover of X contains a groupable subcover. This...
The linear refinement number is the minimal cardinality of a centered family in such that no linearly ordered set in refines this family. The linear excluded middle number is a variation of . We show that these numbers estimate the critical cardinalities of a number of selective covering properties. We compare these numbers to the classical combinatorial cardinal characteristics of the continuum. We prove that = = in all models where the continuum is at most ℵ₂, and that the cofinality of is...
We study and classify topologically invariant σ-ideals with an analytic base on Euclidean spaces, and evaluate the cardinal characteristics of such ideals.
We describe a totally proper notion of forcing that can be used to shoot uncountable free sequences through certain countably compact non-compact spaces. This is almost (but not quite!) enough to produce a model of ZFC + CH in which countably tight compact spaces are sequential-we still do not know if the notion of forcing described in the paper can be iterated without adding reals.
A subset of the plane is called a two point set if it intersects any line in exactly two points. We give constructions of two point sets possessing some additional properties. Among these properties we consider: being a Hamel base, belonging to some -ideal, being (completely) nonmeasurable with respect to different -ideals, being a -covering. We also give examples of properties that are not satisfied by any two point set: being Luzin, Sierpiński and Bernstein set. We also consider natural generalizations...