A note on negative tagging for least fixed-point formulae
Proof systems with sequents of the form U ⊢ Φ for proving validity of a propositional modal μ-calculus formula Φ over a set U of states in a given model usually handle fixed-point formulae through unfolding, thus allowing such formulae to reappear in a proof. Tagging is a technique originated by Winskel for annotating fixed-point formulae with information about the proof states at which these are unfolded. This information is used later in the proof to avoid unnecessary unfolding, without...
We investigate a Gentzen-style proof system for the first-order -calculus based on cyclic proofs, produced by unfolding fixed point formulas and detecting repeated proof goals. Our system uses explicit ordinal variables and approximations to support a simple semantic induction discharge condition which ensures the well-foundedness of inductive reasoning. As the main result of this paper we propose a new syntactic discharge condition based on traces and establish its equivalence with the semantic...
We investigate a Gentzen-style proof system for the first-order μ-calculus based on cyclic proofs, produced by unfolding fixed point formulas and detecting repeated proof goals. Our system uses explicit ordinal variables and approximations to support a simple semantic induction discharge condition which ensures the well-foundedness of inductive reasoning. As the main result of this paper we propose a new syntactic discharge condition based on traces and establish its equivalence with the semantic...