Preboolean MV-algebras as bipartite MV-algebras.
In this note we characterize bipartite MV-algebras by introducing the notion of preboolean MV-algebras.
In this note we characterize bipartite MV-algebras by introducing the notion of preboolean MV-algebras.
It is shown that pseudo -algebras are categorically equivalent to certain bounded -monoids. Using this result, we obtain some properties of pseudo -algebras, in particular, we can characterize congruence kernels by means of normal filters. Further, we deal with representable pseudo -algebras and, in conclusion, we prove that they form a variety.
The aim of this paper is to define the notions of pseudo-MV algebra of fractions and maximal pseudo-MV algebra of quotients for a pseudo-MV algebra (taking as a guide-line the elegant construction of complete ring of quotients by partial morphisms introduced by G. Findlay and J. Lambek-see [14], p.36). For some informal explanations of the notion of fraction see [14], p. 37. In the last part of this paper the existence of the maximal pseudo-MV algebra of quotients for a pseudo-MV algebra (Theorem...
In this paper we introduce stable topology and -topology on the set of all prime filters of a BL-algebra and show that the set of all prime filters of , namely Spec() with the stable topology is a compact space but not . Then by means of stable topology, we define and study pure filters of a BL-algebra and obtain a one to one correspondence between pure filters of and closed subsets of Max(), the set of all maximal filters of , as a subspace of Spec(). We also show that for any filter...
In this paper we investigate a propositional fuzzy logical system LΠ which contains the well-known Lukasiewicz, Product and Gödel fuzzy logics as sublogics. We define the corresponding algebraic structures, called LΠ-algebras and prove the following completeness result: a formula φ is provable in the LΠ logic iff it is a tautology for all linear LΠ-algebras. Moreover, linear LΠ-algebras are shown to be embeddable in linearly ordered abelian rings with a strong unit and cancellation law.