Hyperplane Arrangements with a Lattice of Regions.
In this paper we investigate a class of problems permitting a good characterisation from the point of view of morphisms of oriented matroids. We prove several morphism-duality theorems for oriented matroids. These generalize LP-duality (in form of Farkas' Lemma) and Minty's Painting Lemma. Moreover, we characterize all morphism duality theorems, thus proving the essential unicity of Farkas' Lemma. This research helped to isolate perhaps the most natural definition of strong maps for oriented matroids....
We introduce the notion of a matroid over a commutative ring , assigning to every subset of the ground set an -module according to some axioms. When is a field, we recover matroids. When , and when is a DVR, we get (structures which contain all the data of) quasi-arithmetic matroids, and valuated matroids, i.e. tropical linear spaces, respectively. More generally, whenever is a Dedekind domain, we extend all the usual properties and operations holding for matroids (e.g., duality), and...